Cage trials using an endogenous meiotic drive gene in the mosquito Aedes aegypti to promote population replacement.
نویسندگان
چکیده
Control of arthropod-borne diseases based on population replacement with genetically modified non-competent vectors has been proposed as a promising alternative to conventional control strategies. Due to likely fitness costs associated with vectors manipulated to carry anti-pathogen effector genes, the effector genes will need to be coupled with a strong drive system to rapidly sweep them into natural populations. Endogenous meiotic drive systems have strong and stable population replacement potential, and have previously been reported in two mosquito species: Aedes aegypti and Culex pipiens. To investigate the influence of an endogenous meiotic drive gene on Ae. aegypti population dynamics, we established three experimental population types that were initiated with 100%, 10%, and 1% male mosquitoes carrying a strong meiotic driver (T37 strain) and 100% sensitive females (RED strain), respectively. Among the 100% and 10% populations, early generations were highly male biased, which reflected the effects of the meiotic driver, and remained more than 60% male by the F(15). A genetic marker tightly linked with the meiotic driver on chromosome 1 showed strong selection for the T37 strain-specific allele. Similar but reduced effects of the meiotic driver were also observed in the 1% populations. These results suggest that release of Ae. aegypti males carrying a strong meiotic driver into drive sensitive populations can be an effective tool for population replacement, and provide a foundation for additional studies including both experimental populations and simulations by mathematical modeling.
منابع مشابه
Population dynamics of an endogenous meiotic drive system in Aedes aegypti in Trinidad.
An endogenous meiotic drive system was previously reported to be segregating in the yellow fever mosquito Aedes aegypti L. (Diptera: Culicidae) population in Trinidad. The meiotic driver (M(D)) is tightly linked to the male determining locus and selectively targets sensitive responders linked to the female determining allele, causing fragmentation of female gametes. This results in highly male-...
متن کاملReinvestigation of an endogenous meiotic drive system in the mosquito, Aedes aegypti (Diptera: Culicidae).
We have initiated efforts to determine the molecular basis for the M(D) meiotic drive system in the mosquito, Aedes aegypti. The effect of the M(D) gene is a highly male-biased sex ratio, but varies depending on the frequency and sensitivity of a susceptible responder m(s) allele. The M(D) system has potential as a mechanism for driving trangenes for pathogen resistance into natural Ae. aegypti...
متن کاملPhylogenetic Analysis of Aedes aegypti Based on Mitochondrial ND4 Gene Sequences in Almadinah, Saudi Arabia
Background: Aedes aegypti is the main vector of the yellow fever and dengue virus. This mosquito has become the major indirect cause of morbidity and mortality of the human worldwide. Dengue virus activity has been reported recently in the western areas of Saudi Arabia. There is no vaccine for dengue virus until now, and the control of the disease depends on the control of the vector. Objectiv...
متن کاملTransmission of African Horse-Sickness by Means of Mosquito Bites and Replication of the Virus in Aedes aegypti
متن کامل
Wolbachia establishment and invasion in an Aedes aegypti laboratory population.
A proposed strategy to aid in controlling the growing burden of vector-borne disease is population replacement, in which a natural vector population is replaced by a population with a reduced capacity for disease transmission. An important component of such a strategy is the drive system, which serves to spread a desired genotype into the targeted field population. Endosymbiotic Wolbachia bacte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of tropical medicine and hygiene
دوره 74 1 شماره
صفحات -
تاریخ انتشار 2006